## MATH 347H: FUNDAMENTAL MATHEMATICS, FALL 2017

PRACTICE PROBLEMS FOR MIDTERM 1

1. Prove that for all sets $A, B$,
(a) $A \cup B=(A-B) \cup(A \cap B) \cup(B-A)$.
(b) $(A \cup B)-B=A-B$.
2. Read the following definition and analyze it.

Definition. Vectors $\vec{v}_{1}, \vec{v}_{2} \ldots, \vec{v}_{k} \in \mathbb{R}^{n}$ are called linearly independent if

$$
\forall a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{R}\left[a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{k} \vec{v}_{k}=\overrightarrow{0} \Longrightarrow\left(\forall i \leq k, a_{i}=0\right)\right] .
$$

Vectors $\vec{v}_{1}, \vec{v}_{2} \ldots, \vec{v}_{k} \in \mathbb{R}^{n}$ are said to be linearly dependent if they are not linearly independent.
(a) Write out explicitly what it means for vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}} \ldots, \overrightarrow{v_{k}} \in \mathbb{R}^{n}$ to be linearly dependent. The only negation sign/word in your sentence should be negating equality $\neq$.
(b) Are the vectors $(1,1)$ and $(1,0)$ linearly independent? Prove your answer.
(c) Are the vectors $(1,0,0),(0,1,1)$ and $(1,1,1)$ linearly independent? Prove your answer.
3. (a) For sets $X, Y$, define what is a function $f: X \rightarrow Y$.
(b) Let $f \subseteq \mathbb{R} \times[0,+\infty)$ be defined as the set of all pairs $(x, y) \in \mathbb{R} \times[0,+\infty)$ such that

- if $x \leq-1$ then $y=x^{2}$,
- if $-1 \leq x \leq 1$ then $y=|x|$,
- if $x \geq 0$ then $y=x$.

Is $f$ a function $\mathbb{R} \rightarrow[0,+\infty)$ ? Justify your answer.
4. Let $X$ be a set and recall that $\mathscr{P}(X)$ denotes its powerset. Recall the operation of symmetric difference $A \triangle B$ and realize that it is a binary operation on $\mathscr{P}(X)$, i.e. it is a function $\mathscr{P}(X) \times \mathscr{P}(X) \rightarrow \mathscr{P}(X)$ that takes a pair $(A, B)$ of subsets of $X$ to $A \Delta B$.
(a) Verify that $\Delta$ (taken in place of + ) satisfies Axioms (A2) and (A3).
(b) Show that (A4) also holds by finding a set $\mathfrak{C} \in \mathscr{P}(X)$ that serves as the identity for the operation $\Delta$, i.e. is such that, for any set $A \in \mathscr{P}(X), A \Delta \mathscr{O}=A=\mathfrak{C} \Delta A$.
(c) Show that even (A5) holds by finding, for each $A \in \mathscr{P}(X)$, a set $A^{\prime} \in \mathscr{P}(X)$ such that $A \Delta A^{\prime}=\mathfrak{C}=A^{\prime} \Delta A$.
5. Do 1.5.7 and 1.5.9 of Sally's book.
6. Prove that $2^{n} \geq 2 n$ for every $n \in \mathbb{N}$.
7. (a) For a set $X$, what is a binary relation on $X$ ? Write down the definition.
(b) Let $R$ be any rectangle in $\mathbb{R}^{2}$. Is $R$ a binary relation on $\mathbb{R}$ ?
(c) For an arbitrary binary relation $S$ on $\mathbb{R}$, determine what geometric (in terms of its shape) conditions on $S$ correspond to reflexivity, irreflexivity, symmetry, and anti-symmetry.

