MATH 347H: FUNDAMENTAL MATHEMATICS, FALL 2017

PRACTICE PROBLEMS FOR MIDTERM 1

- **1.** Prove that for all sets *A*, *B*,
 - (a) $A \cup B = (A B) \cup (A \cap B) \cup (B A)$.
 - (b) $(A \cup B) B = A B$.
- 2. Read the following definition and analyze it.

Definition. Vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_k} \in \mathbb{R}^n$ are called *linearly independent* if

$$\forall a_1, a_2, \dots, a_k \in \mathbb{R}\left[a_1\vec{v_1} + a_2\vec{v_2} + \dots + a_k\vec{v_k} = \vec{0} \implies \left(\forall i \le k, a_i = 0\right)\right].$$

Vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_k} \in \mathbb{R}^n$ are said to be *linearly dependent* if they are not linearly independent.

- (a) Write out explicitly what it means for vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_k} \in \mathbb{R}^n$ to be linearly dependent. The only negation sign/word in your sentence should be negating equality \neq .
- (b) Are the vectors (1,1) and (1,0) linearly independent? Prove your answer.
- (c) Are the vectors (1,0,0), (0,1,1) and (1,1,1) linearly independent? Prove your answer.
- **3.** (a) For sets *X*, *Y*, define what is a function $f : X \to Y$.
 - (b) Let f ⊆ ℝ×[0,+∞) be defined as the set of all pairs (x, y) ∈ ℝ×[0,+∞) such that
 if x ≤ -1 then y = x²,
 - if $-1 \le x \le 1$ then y = |x|,
 - if $x \ge 0$ then y = x.
 - Is *f* a function $\mathbb{R} \to [0, +\infty)$? Justify your answer.
- **4.** Let *X* be a set and recall that $\mathscr{P}(X)$ denotes its powerset. Recall the operation of symmetric difference $A \bigtriangleup B$ and realize that it is a *binary operation* on $\mathscr{P}(X)$, i.e. it is a function $\mathscr{P}(X) \times \mathscr{P}(X) \to \mathscr{P}(X)$ that takes a pair (A, B) of subsets of *X* to $A \bigtriangleup B$.
 - (a) Verify that \triangle (taken in place of +) satisfies Axioms (A2) and (A3).
 - (b) Show that (A4) also holds by finding a set $\mathfrak{O} \in \mathscr{P}(X)$ that serves as the *identity* for the operation \triangle , i.e. is such that, for any set $A \in \mathscr{P}(X)$, $A \triangle \mathfrak{O} = A = \mathfrak{O} \triangle A$.
 - (c) Show that even (A5) holds by finding, for each $A \in \mathscr{P}(X)$, a set $A' \in \mathscr{P}(X)$ such that $A \bigtriangleup A' = \mathfrak{O} = A' \bigtriangleup A$.
- **5.** Do 1.5.7 and 1.5.9 of Sally's book.

- **6.** Prove that $2^n \ge 2n$ for every $n \in \mathbb{N}$.
- 7. (a) For a set *X*, what is a binary relation on *X*? Write down the definition.
 - (b) Let *R* be any rectangle in \mathbb{R}^2 . Is *R* a binary relation on \mathbb{R} ?
 - (c) For an arbitrary binary relation S on \mathbb{R} , determine what geometric (in terms of its shape) conditions on S correspond to reflexivity, irreflexivity, symmetry, and anti-symmetry.